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ON THE STRESSES IN A NONLINEAR BEAM SUBJECT TO
RANDOM EXCITATION

RICHARD E. HERBERT*

The College of Aeronautics, Cranfield, Bedford

Abstract-The technique of equivalent linearization is used to investigate the effect of the membrane force on
the stresses in a simply supported Bernoulli~Euler beam undergoing moderately large random vibrations. It
is shown that the percentage reduction of the mean square bending stress can be substantially less than the
percentage reduction of the mean square displacements, thereby lowering any expected 'nonlinear safety
factor' of the stresses. Furthermore, the difference of percentage reduction is greater for wider spectral densities
of the load.

INTRODUCTION

THE response of linear continuous structures to random excitation has received much
attention in the past few years [1-5]. Eringen [2] has shown that the series for the mean
square stresses in a Bernoulli-Euler beam subject to a purely random excitation diverge,
Bogdanoff and Goldberg [6] have since shown that a more realistic type of loading
produces finite mean square stresses.

Since the linear theory of structures is generally valid for only very small displacements,
the response of nonlinear structures to random excitation has recently been investigated
[7-10]. Lin (8] has used the method of equivalent linearization to investigate the single
mode response of a slightly nonlinear panel. He has indicated that the mean square
response of the panel is reduced due to the membrane forces. Herbert [9, 10] has since
used the method of the Markoff process and the associated Fokker-Planck equation to
investigate the response of nonlinear beams and plates to purely random loadings.
He has shown that the nonlinear coupling of the modes can be quite significant.

In considering the response of nonlinear structures to random excitation it is important
to ascertain the effect of the nonlinearity on the stresses. Since the displacements of a
beam are considerably reduced due to the membrane force we should expect the same
result for the stresses. However, the question arises as to whether this reduction is the
same as that of the displacements. It was impossible in reference [9] to investigate this
problem since, for purely random loadings, the mean square stresses diverge. Therefore,
it was deemed advisable to study the response of a nonlinear Bernoulli-Euler beam subject
to a realistic random loading, i.e. one with finite power. This paper is the result of such
an investigation. Because the method of the Markoff process and the associated Fokker
Planck equation is only applicable to systems excited by white noise, the technique of
equivalent linearization is used. While this technique is valid for only slightly nonlinear
systems, it still gives us some insight as to the effect of the nonlinearity on the stresses.

* Formerly at: Department of Engineering Science and Mechanics, University of Florida, Gainesville.
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ANALYSIS

(1)

(2)

Consider an elastic beam with pin-ended supports which are restrained from motion.
Then the equation governing moderately large vibrations is
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where the membrane force N is given by

N = ~~ I:(~y dx

and E is the elastic modulus, I the moment of inertia of the cross section, p the mass
density, A the cross~sectional area, L the length of the beam and q the random load per
unit length acting on the beam. We expand wand q in terms of the eigenfunctions of
the linear problem so that we have

IX) mnx
w(x, t) = L w",(t) sin~

",=1

(3)

(4)

Upon substitution of(3) and (4) into (1) and (2) we obtain the following equation governing
the w",:

where

.. . 2( 1 'X' 22)w"'+POwm+Wm 1+-4 2-2 L: n wn wm = a",
R m n 1

(5)

and

P
Po = pA'

q",
am = pA'

(6)2( . mnx
q",(t) =LJ0 q(x, t) sm L dx.

Equation (5) is a nonlinear stochastic differential equation. Knowing statistical
properties of the driving function a"" there exists no standard technique for obtaining
the statistical properties of the response variable w",. For small nonlinearities we can
obtain approximate values of these statistical properties by using the technique of
equivalent linearization.

We rewrite (5) as
(7)



where
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(8)

(9)

(10)

(II)

If in (7) Bm is neglected then (7) will be linear and can be handled by established tech
niques. Obviously the error will be smaller if Bm is smaller. Therefore the choice of km

is the value which minimizes some statistical measure of Bm• The most mathematically
expedient measure is the mean square value. This is given by

1 JT ( 1 00 )22' 4 2 2 2
Bm = hm 2T WmWm 1-km +4R2 2 L n W n dt.

T ... oo -T m n'=l

For an ergodic process the time average may be replaced by an ensemble average so
that (9) may be replaced by

<( 1 00 )2)2_ 42 22
Bm - {J)m Wm I-km +4R2m2 n~l n Wn •

If the load is assumed to be Gaussian then with B", neglected in (7) the Wm will be Gaussian
and distributed according to the law

1 (W2)p(wm) = (21t)l-a: exp - 2/11

where

Equation (10) may then be written as

fOO f00 ( 1 00 )2 00 1 (2 )2" _ 4 2 2 2 Wr
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Minimizing B;' with respect to km leads to

roo ... fro (1 +4R~ 2 f n2w;)w;. fi exp (- W;2) dWr
k = J-00 - a; m n=1 r =1 2ar
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Evaluating the integrals,

If in (7) Bm is neglected and we assume that

<q(x,t)q(y,t+r» = b(x-y)R(r)

(12)

(13)

(14)

(I 5)

(16)
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where

(18)J
'X .

hm(T) = _~ . _2~wr ~(j) _~.
21[ _CT, wmkm- W +j/3ow

We wish R(T) to be such that the total power of the input is finite. That is, we want

i' A(w) dw < x'.
.- --- 'x

where

A(w) = J~", R(T)e-jwrdT.

A simple form which has this feature is

R(T) = NoLwoe-lworl,

( ) _ N oLw5
A w - 2 2'

wo+w

( (9)

(20)

(21)

(22)

(23)

While this spectral density is not necessarily a typical form for real lo~dings it has the
features of finite power, one adjustable parameter and ease in performing the ensuing
integrations.

Combining (17), (18) and (21) leads us to the following results for 0";':

[

w6 ( w~ /36)~wo+- 1+-----
2 No /30 kmw;, kmw;,

am = p 2A 2 (kmw;,+w6?-/3~w~ ,

If we consider the important case of light damping for which

then (23) reduces to

where

2 j.L0"6
(Jm = kmm4(m4 km+j.L)'

w6
Jl = 2'

Wj

2 NoL4

(Jo = /3£/1[4'

(24)

(25)
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It should be noted that the limiting case of white noise can be obtained by letting Wo -+ 00.

That is,

lim R(t) = NoL<5(r),

lim A(w)::;: NoL.
(1.)0-.+ 00

For this case equation (24) reduces to
2

2 ao
am =-k4'mm

(26)

(27)

(28)

and for km = 1, the linear case, this reduces to a well-known result.
Equations (15) and (24) are the two equations governing km and a;'. Elimination of

km between these two equations would lead us to a;'. Unfortunately, this is not such a
simple process. An alternate approach is to compute the km on the basis that a;' is that
of the linear problem. The accuracy of this approach is of the same order of magnitude
as that obtained by solving equations (15) and (24) exactly, [11].

Thus, since the linear value of a;' is given by

2
2 /lao

(am)linear ::;: m4(m4 +Ji)' (29)

then km is given by

(30)

where

(31)

Substitution of (30) and (31) into (24) would lead us to a;'.
Having a;', the various mean square quantities characterizing the response of the

beam can be computed. For example, the mean square displacement of the beam is
simply

00 2. 2 mnx<w2(x, t»::;: L am sm -,
"'=1 L

(32)

which can be seen to be less than the corresponding displacement of the linear problem.
The bending stress in the beam is given by

S _ Eh 82w Eh ~ 2 • m1tX
B - -2 az = -2 L.. m w",sm-- (33)

x m=1 L
and the membrane stress by

NEiL (OW)2 En2
00

SM = - ::;: - - dx = -2 L m2w~.
A 2L~o 8x 4L m=1

(34)
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The total mean square stress is

(S2> = «SB+SM)2> = <S~>+2(SMSB>+<Sit>.

Now from (11), (33) and (34)

05)

(36)

so that

(37)

or

E2h2n4 ( 00 mnx 1 00 (X, \

(82) = --4- I m4l1~sin2--+-2 I I m2n2<w~w;».
4L m=1 L 4h 11=1 m=l "

which upon making use of (11) and (24) reduces to

E 2h2n4 [00 mnx
(S2> = 4L4 a~f1. m~l k~1(m4km+f1.)-1 sin2T

+~~(L~l [kmm
2
(m

4 +f1.)J-lf+2,Jl [kmm
2
(m

4+Jl)J-2)}
where km is given by equation (24).

(38)

(39)

NUMERICAL RESULTS

As previously l:\lentioned it is to be expected that the membrane force should cause
a reduction of the m'ean square displacements and stresses. Indeed, inspection ofequations
(32) and (39) verifies this. However, we wish to know if the reduction is the same for both.

1.00 .------,.----..----...,---.......,.

1.00

0.90 1..--__--'- -'- -'-__---'

0.90 0.95
<wi!.>

<w 2 >L

FIG. I. Ratio of reduction of stress to reduction of deflection at midspan.
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To answer this question numerical computations have been performed for the case of a
rectangular beam with h = 3, O"~ ranging from 0 to 0'04, and for various values of Wo

(h and 0"0 carry the dimensions of length).
In performing the calculations it was found that while the membrane force reduces

<S~>, the difference between <S2> and <S~> is negligible, for the range of parameters
considered. The significant results of the computations are presented in Fig. 1. There
the ratio <S~)/<st) is plotted against the ratio <w2)/<wt) where <st) and <wt) are
the mean square stress and displacement, respectively, of the linear beam. It can be seen
from these curves that for Jl = 1 (wo = wd the percentage reduction of mean square
stress and mean square displacement are nearly equal. However, upon increasing Wo a
smaller percentage reduction of the mean square stress occurs. As the driving frequency
continues to increase the difference in percentage reduction of the stress and displacement
becomes greater.

Designers and analysts tend to think they have a 'nonlinear safety factor' in problems
such as these. While this is certainly true, these computations indicate that higher driving
frequencies reduce this effect on the stresses so that structures may not be as safe as
anticipated.

CONCLUSIONS

This paper has been devoted to the investigation of the effects of the membrane
force on the stresses in a simply supported Bernoulli-Euler beam undergoing moderately
large random vibrations. The method of equivalent linearization has been used to derive
approximate expressions for mean square displacements and stresses.

Numerical computations have indicated that the percentage reduction of the mean
square stresses can be substantially less than the percentage reduction of the mean
square displacements thereby reducing any 'nonlinear safety factor' that one might
consider. Furthermore, as the spectral density of the load becomes wider the difference
in the percentage reduction of stress and displacement becomes greater.
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(Receil'ed 15 May 1964)

Zusammenfassung-Das Verfahren der aquivalenten Linearisierung wird dazu herangezogen, die Wirkung der
Membrankraft auf die Spannungen in einem einfachen, gesttitzen Benoulli-Euler Balken zu untersuchen. der
miissig starken Zufallsschwingungen ausgestzt is!. Es wird gezeigt, dass die prozentuaJe Senkung des mittleren
Quadratwertes der Biegebeanspruchung wesentlich unter der prozentualen Senkung des mittleren Quadratwertes
der Auslenkungen liegen kann, wodurch der erwartete "nichtlineare Sicherheitsfaktor" der Beanspruchungen
herabgesetzt wird. Ausserdem vergrossert sich bei breiteren SprektraJdichten der BeJastung der Unterschied
zwischen den prozentualen Senkungen.

A6CTpaKT-Bocnonb3yeTcH MeTO~ 3KBHBaneHTHOH nHHeapH3aUHH ~nH Hccne~OBaHHH BOJ~eMCTBHH

MeM6paHHoH CHnbl Ha HanpHJKeHHH BcBo6o~HO OnePTOH 6anKe l>epHynnH-3J:inepa npH yMepeHHO 60JlbWHX
cJlY'l.aiiHblx Kone6aHHlIx. nOKa3blBaeTClI, 'ITO OTHOCHTeJlbliOC YMellbWCIIHC CpcnHCKBa~paTH'IHOrO

J13rH6alOllIero lIanpllJKeHHH MOJKeT 6blTb CYllIecTBCHHO MeHbUIC OTHOCHTenblioro YMeHbUJeHHil
cpe~HeKBa~paTH'IlIbIX nepeMcweHHH, 'ITO npHBonHT KCHHJKeHHIO KaKOrO-JlH60 OJKHnaeMOrD "f1eJlHHeHHOro
K03q)(!lHl.\l1eHTa 6e30naCHOCHI" HanpHJKeHHH. KpoMe Toro, pa'lHOCTb OTHOCHTeJlbHblX YMeHbweH~1H

60J1hWe ~JIH 60JIee WHpOKHX cneKTpaJIbHhJX nJlOTHOCTeH HarpYJKH.


