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ON THE STRESSES IN A NONLINEAR BEAM SUBJECT TO
RANDOM EXCITATION
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Abstract—The technique of equivalent linearization is used to investigate the effect of the membrane force on
the stresses in a simply supported Bernoulli-Euler beam undergoing moderately large random vibrations. It
is shown that the percentage reduction of the mean square bending stress can be substantially less than the
percentage reduction of the mean square displacements, thereby lowering any expected ‘nonlinear safety
factor® of the stresses. Furthermore, the difference of percentage reduction is greater for wider spectral densities
of the load.

INTRODUCTION

THE response of linear continuous structures to random excitation has received much
attention in the past few years [1~5]. Eringen [2] has shown that the series for the mean
square stresses in a Bernoulli-Euler beam subject to a purely random excitation diverge.
Bogdanoff and Goldberg [6] have since shown that a more realistic type of loading
produces finite mean square stresses.

Since the linear theory of structures is generally valid for only very small displacements,
the response of nonlinear structures to random excitation has recently been investigated
[7-10]. Lin {8] has used the method of equivalent linearization to investigate the single
mode response of a slightly nonlinear panel. He has indicated that the mean square
response of the panel is reduced due to the membrane forces. Herbert [9, 10] has since
used the method of the Markoff process and the associated Fokker-Planck equation to
investigate the response of nonlinear beams and plates to purely random loadings.
He has shown that the nonlinear coupling of the modes can be quite significant.

In considering the response of nonlinear structures to random excitation it is important
to ascertain the effect of the nonlinearity on the stresses. Since the displacements of a
beam are considerably reduced due to the membrane force we should expect the same
result for the stresses. However, the question arises as to whether this reduction is the
same as that of the displacements. It was impossible in reference [9] to investigate this
problem since, for purely random loadings, the mean square stresses diverge. Therefore,
it was deemed advisable to study the response of a nonlinear Bernoulli~Euler beam subject
to a realistic random loading, i.e. one with finite power. This paper is the result of such
an investigation. Because the method of the Markoff process and the associated Fokker—
Planck equation is only applicable to systems excited by white noise, the technique of
equivalent linearization is used. While this technique is valid for only slightly nonlinear
systems, it still gives us some insight as to the effect of the nonlinearity on the stresses.

* Formerly at: Department of Engineering Science and Mechanics, University of Florida, Gainesville.
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ANALYSIS

Consider an elastic beam with pin-ended supports which are restrained from motion.
Then the equation governing moderately large vibrations is
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where the membrane force N is given by
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and E is the elastic modulus, I the moment of inertia of the cross section, p the mass
density, 4 the cross-sectional area, L the length of the beam and g the random load per
unit length acting on the beam. We expand w and ¢ in terms of the eigenfunctions of
the linear problem so that we have
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Upon substitution of (3) and (4) into (1) and (2) we obtain the following equation governing
the w,,:
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Equation (5) is a nonlinear stochastic differential equation. Knowing statistical
properties of the driving function a,,, there exists no standard technique for obtaining
the statistical properties of the response variable w,,. For small nonlinearities we can
obtain approximate values of these statistical properties by using the technique of
equivalent linearization.

We rewrite (5) as

Wy, + ﬂowm + kmwr%nwm +Epy = Gy (N
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where
1 @O
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If in (7) &, is neglected then (7) will be linear and can be handled by established tech-
niques. Obviously the error will be smaller if ¢, is smaller. Therefore the choice of k,,
is the value which minimizes some statistical measure of ¢,. The most mathematically
expedient measure is the mean square value. This is given by
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For an ergodic process the time average may be replaced by an ensemble average so
that (9) may be replaced by
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1f the load is assumed to be Gaussian then with ¢, neglected in (7) the w,, will be Gaussian
and distributed according to the law
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where
T = Who- (12)
Equation (10) may then be written as
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Minimizing gf, with respect to k,, leads to
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Evaluating the integrals,
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If in (7) &, is neglected and we assume that
{4lx, gy, t+1)> = 6(x—y)R(r) (16)
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then
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We wish R(z) to be such that the total power of the input is finite. That is, we want

I Alwydw < . (19)
where
Alw) = j“ R(t)e J*r dr. (20)
A simple form which has this feature is
R(t) = NoLwge 10", (21)
Alw) = %“—Jrlf”aé (22)

While this spectral density is not necessarily a typical form for real loadings it has the
features of finite power, one adjustable parameter and ease in performing the ensuing
integrations.

Combining (17), (18) and (21) leads us to the following results for ¢2:
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If we consider the important case of light damping for which
Bo < @y,
Bo < wo,

then (23) reduces to

2
2 Moo 24
Im = e mAmh, + )’ (@4)

where

(25)



On the stresses in a nonlinear beam subject to random excitation 239

It should be noted that the limiting case of white noise can be obtained by letting wy — 0.
That is,

lim R{t) = N,Ld(1), (26)
lim A(w) = NyL. 27

For this case equation (24) reduces to

o2 = 75 (28)
" km*
and for k,, = 1, the linear case, this reduces to a well-known result.
Equations (15) and (24) are the two equations governing k,, and ¢2. Elimination of
k,, between these two equations would lead us to ¢2. Unfortunately, this is not such a
simple process. An alternate approach is to compute the k,, on the basis that ¢2 is that
of the linear problem. The accuracy of this approach is of the same order of magnitude
as that obtained by solving equations (15) and (24) exactly, [11].

Thus, since the linear value of 62 is given by

2
uo
(Ur%t)linear = ;;m’ (29)
then &, is given by
2
_ . 9% [Fw 2
Fom = I+4R:’i_ m? + m*(m*+p) [’ (30)
where
Fp= Y ——— @31)

o2 A )

Substitution of (30) and (31) into (24) would lead us to o2

Having o7, the various mean square quantities characterizing the response of the
beam can be computed. For example, the mean square displacement of the beam is
simiply

mnx
»
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which can be seen to be less than the corresponding displacement of the linear problem.
The bending stress in the beam is given by
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The total mean square stress is
(82> = {(Sp+ 8> = (S§>+2(SpSp) + (S3. {35)
Now from (11), (33) and (34)

<SMSB> =0, (36)
so that
(8% = (Sip+<Sk> (37)
or
E?R’n* [ & mox 1 % 02
2y o 4,2 2MX 1 220,22
(8% K (m[i:lm T Si* =+ 3 n; mglm n <w,,,w,,>). (38)

which upon making use of (11) and (24) reduces to
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where k,, is given by equation (24).

NUMERICAL RESULTS

As previously rfntioned it is to be expected that the membrane force should cause
a reduction of the mean square displacements and stresses. Indeed, inspection of equations
(32) and (39} verifies this. However, we wish to know if the reduction is the same for both.
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FiG. 1. Ratio of reduction of stress to reduction of deflection at midspan.
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To answer this question numerical computations have been performed for the case of a
rectangular beam with h = 3, ¢3 ranging from 0 to 0:04, and for various values of w,
(h and o, carry the dimensions of length).

In performing the calculations it was found that while the membrane force reduces
(82>, the difference between ¢(S>) and (S2) is negligible, for the range of parameters
considered. The significant results of the computations are presented in Fig. 1. There
the ratio (S2)/{S?) is plotted against the ratio {w?>/{w?) where (§?) and (w}) are
the mean square stress and displacement, respectively, of the linear beam. It can be seen
from these curves that for u = 1 (wy = w,) the percentage reduction of mean square
stress and mean square displacement are nearly equal. However, upon increasing w, a
smaller percentage reduction of the mean square stress occurs. As the driving frequency
continues to increase the difference in percentage reduction of the stress and displacement
becomes greater.

Designers and analysts tend to think they have a ‘nonlinear safety factor’ in problems
such as these. While this is certainly true, these computations indicate that higher driving
frequencies reduce this effect on the stresses so that structures may not be as safe as
anticipated.

CONCLUSIONS

This paper has been devoted to the investigation of the effects of the membrane
force on the stresses in a simply supported Bernoulli-Euler beam undergoing moderately
large random vibrations. The method of equivalent linearization has been used to derive
approximate expressions for mean square displacements and stresses.

Numerical computations have indicated that the percentage reduction of the mean
square stresses can be substantially less than the percentage reduction of the mean
square displacements thereby reducing any ‘nonlinear safety factor’ that one might
consider. Furthermore, as the spectral density of the load becomes wider the difference
in the percentage reduction of stress and displacement becomes greater.
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Zusammenfassung—Das Verfahren der d4quivalenten Linearisierung wird dazu herangezogen, die Wirkung der
Membrankraft auf die Spannungen in einem einfachen, gestiitzen Benoulli-Euler Balken zu untersuchen, der
missig starken Zufallsschwingungen ausgestzt ist. Es wird gezeigt, dass die prozentuale Senkung des mittleren
Quadratwertes der Biegebeanspruchung wesentlich unter der prozentualen Senkung des mittleren Quadratwertes
der Auslenkungen liegen kann, wodurch der erwartete “‘nichtlineare Sicherheitstaktor” der Beanspruchungen
herabgesetzt wird. Ausserdem vergrossert sich bei breiteren Sprektraldichten der Belastung der Unterschied
zwischen den prozentualen Senkungen.

A6crpakT—Bocnons3yercs MeTON 3KBHBAJEHTHOH JiMHEAPM3aUMKM [l MCCNEJOBaHUs  BO3ASHCTBUS
MeMOpaHHOM CHIbl HA Hanpshkenus B cBODOAHO onéproit Basike bepHynnu-Diaepa npu ymepeHHo 60Jblunx
ciyvaifslx  konebanusx. [loka3plBaeTCs. 4TO OTHOCHUTENLHOE YMEHBIUCHUE CPEaHEKBAAPATHYHOIO
n3rubarolIero  HanpsKeHUst MOXET ObiThb CYUIECTBEHHO MEHbLUIE OTHOCHTENBHOIO YMEHbBLUICHHUS
CpelHEKBAAPATHYHBIX EPEMELLICHHUH, YTO NPHBOINT K CHUXKEHHIO KAKOTO-/TMDO OXHIAEMOTO " HETUMHEHHOT O
xo3dduunenta OezomacHoctu” wanpsxeHunit. Kpome Toro, pa3HoCTe OTHOCHUTEMBHBIX YMEHbLICHUI
6o.blite T 6o1ee WIMPOKUX CIEKTPAIBHBIX JTOTHOCTER HATPY3KH.



